viernes, 14 de junio de 2013

Gasto
El gasto hidráulico es aquel que se da a lo largo de alguna tubería y es debido a la fricción que ejerce el agua sobre las paredes del tubo.

La fórmula del gasto es:
Q= V/ T, 

donde:
 Q es gasto
 V es volumen 
 T es tiempo.

Problema:


Volumen


El volumen es una magnitud escalar definida como el espacio ocupado por un objeto. Es una función derivada de longitud, ya que se halla multiplicando las tres dimensiones.

En física, el volumen es una magnitud física extensiva que es asociada a la propiedad de los cuerpos físicos de ser extensos o materiales.

La unidad de medida de volumen en el Sistema Internacional de Unidades es el metro cúbico, aunque temporalmente también acepta el litro (que equivale a un decímetro cúbico), el que se utiliza comúnmente en la vida práctica.

La capacidad y el volumen son términos equivalentes, pero no iguales. Se define la capacidad como el espacio vacío de alguna cosa que es suficiente para contener a otra u otras cosas. Por lo tanto, entre ambos términos existe una equivalencia que se basa en la relación entre el litro (unidad de capacidad) y el decímetro cúbico (unidad de volumen).

Este hecho puede verificarse experimentalmente de la siguiente manera: si se tiene un recipiente con agua que llegue hasta el borde, y se introduce en él un cubo sólido cuyas aristas midan 1 decímetro (1 dm3), se derramará 1 litro de agua. De tal forma, puede afirmarse que:
1 dm3 = 1 litro

Equivalencias
1 dm3 = 0,001 m3 = 1.000 cm3

Problema:

Calcula el volumen de un octaedro de 5 cm de arista.

Empuje

El empuje es una fuerza de reacción descrita cuantitativamente por la tercera ley de Newton. Cuando un sistema expele o acelera masa en una dirección (acción), la masa acelerada causará una fuerza igual en dirección contraria (reacción). Matemáticamente esto significa que la fuerza total experimentada por un sistema se acelera con una masa m que es igual y opuesto a m veces la aceleración a, experimentada por la masa:


Un avión genera empuje hacia adelante cuando la hélice que gira, empuja el aire o expulsa los gases expansivos del reactor, hacia atrás del avión. El empuje hacia adelante es proporcional a la masa del aire multiplicada por la velocidad media del flujo de aire.


Similarmente, un barco genera empuje hacia adelante (o hacia atrás) cuando la hélice empuja agua hacia atrás (o hacia adelante). El empuje resultante empuja al barco en dirección contraria a la suma del cambio de momento del agua que fluye a través de la hélice.

Un cohete (y toda la masa unida a él) es propulsado hacia adelante por un empuje igual y en dirección opuesta a la masa multiplicada por su velocidad respecto al cohete.

Problema:


Presión


La presión (símbolo p) es una magnitud física que mide como la proyección de la fuerza en dirección perpendicular por unidad de superficie(esa magnitud es escalar), y sirve para caracterizar cómo se aplica una determinada fuerza resultante sobre una línea. En el Sistema Internacional la presión se mide en una unidad derivada que se denomina pascal (Pa) que es equivalente a una fuerza total de un newton actuando uniformemente en un metro cuadrado. En el Sistema Inglés la presión se mide en libra por pulgada cuadrada (pound per square inch o psi) que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.

La presión es la magnitud vectorial que relaciona la fuerza con la superficie sobre la cual actúa, es decir,equivale a la fuerza que actúa sobre la superficie.

Cuando sobre una superficie plana de área A se aplica una fuerza normal F de manera uniforme, la presión P viene dada de la siguiente forma:
En un caso general donde la fuerza puede tener cualquier dirección y no estar distribuida uniformemente en cada punto la presión se define como:
Donde es un vector unitario y normal a la superficie en el punto donde se pretende medir la presión. La definición anterior puede escribirse también como:


donde:
, es la fuerza por unidad de superficie.
, es el vector normal a la superficie.
, es el área total de la superficie S.

Problema:

Líquidos


El líquido es un estado de agregación de la materia en forma de fluido altamente incompresible (lo que significa que su volumen es, muy aproximadamente, constante en un rango grande de presión).
Un líquido toma la forma de su contenedor cuando está sometido a la fuerza de la gravedad.

El estado líquido es un estado de agregación de la materia intermedio entre el estado sólido y el estado gaseoso. Las moléculas de los líquidos no están tan próximas como las de los sólidos, pero están menos separadas que las de los gases. Las moléculas en el estado líquido ocupan posiciones al azar que varían con el tiempo. Las distancias intermoleculares son constantes dentro de un estrecho margen. En algunos líquidos, las moléculas tienen una orientación preferente, lo que hace que el líquido presente propiedades anisótropas (propiedades, como el índice de refracción, que varían según la dirección dentro del material).

Los líquidos presentan tensión superficial y capilaridad, generalmente se dilatan cuando se incrementa su temperatura y pierden volumen cuando se enfrían, aunque sometidos a compresión su volumen es muy poco variable a diferencia de lo que sucede con otros fluidos como los gases. Los objetos inmersos en algún líquido están sujetos a un fenómeno conocido como flotabilidad.

Problema:


miércoles, 12 de junio de 2013

Peso específico


Se le llama Peso específico a la relación entre el peso de una sustancia y su volumen.
Su expresión de cálculo es:

Unidades

•En el Sistema Internacional de Unidades (SI) se lo expresa en newtons sobre metro cúbico: N/m3.
•En el Sistema Técnico se mide en kilogramos–fuerza sobre metro cúbico: kgf/m3.
•  En el SIMELA se expresa en newtons sobre metro cúbico: N/m3.



Como el kilogramo–fuerza representa el peso de un kilogramo —en la Tierra—, el valor numérico de esta magnitud, expresada en kgf/m3, es el mismo que el de la densidad, expresada en kg/m3.

Por ende, está íntimamente ligado al concepto de densidad, que es de uso fácil en unidades terrestres, aunque confuso según el SI. Como consecuencia de ello, su uso está muy limitado. Incluso, en Física resulta incorrecto.

Problema:

Un objeto tiene una masa de 2190 kg.
a) ¿Cuál es el peso del objeto?
b) Si el volumen que ocupó es de 0.75 m3, ¿Cuál es su peso específico?

Datos:

M = 2190kg                 W = mg                                                      Pe = w/v
W = ?                          W= (2190kg)(9.81m/s2)                             Pe = 21483.9Nw/0.7m3
Pe = ?                          W= 21483.9 Nw                                         Pe = 28045.2 Nw/m3
V = 0.75m3
Densidad


En física y química, la densidad (símbolo ρ) es una magnitud escalar referida a la cantidad de masa contenida en un determinado volumen de una sustancia. La densidad media es la razón entre la masa de un cuerpo y el volumen que ocupa.

Si un cuerpo no tiene una distribución uniforme de la masa en todos sus puntos la densidad alrededor de un punto puede diferir de la densidad media. Si se considera una sucesión pequeños volúmenes decrecientes (convergiendo hacia un volumen muy pequeño) y estén centrados alrededor de un punto, siendo la masa contenida en cada uno de los volúmenes anteriores, la densidad en el punto común a todos esos volúmenes:

La unidad es kg/m3 en el SI.


Problema:


¿Cuál es la densidad de un material, si 30 cm cúbicos tiene una masa de 600 gr?
Solución: 

Sabemos que 




De los datos del problema sabemos que:
· m = 600 gr.
· V = 30 cm3

Entonces reemplazando en la fórmula:
ρ = m / V
ρ = 600 gr / 30 cm3
ρ = 20 gr / cm3
Elasticidad


En física el término elasticidad designa la propiedad mecánica de ciertos materiales de sufrir deformaciones reversibles cuando se encuentran sujetos a la acción de fuerzas exteriores y de recuperar la forma original si estas fuerzas exteriores se eliminan.

La elasticidad es estudiada por la teoría de la elasticidad, que a su vez es parte de la mecánica de sólidos deformables. La teoría de la elasticidad (ETE) como la mecánica de sólidos (MS) deformables describe cómo un sólido (o fluido totalmente confinado) se mueve y deforma como respuesta a fuerzas exteriores.

Una varilla elástica vibrando, es un ejemplo de sistema donde la energía potencial elástica se transforma en energía cinética y viceversa.



Problema:




miércoles, 5 de junio de 2013

Sólidos



Un cuerpo sólido es uno de los cuatro estados de agregación de la materia (siendo los otros gas, líquido, Plasma y el Bose-Einstein), se caracteriza porque opone resistencia a cambios de forma y de volumen. Sus partículas se encuentran juntas y correctamente ordenadas. Las moléculas de un sólido tienen una gran cohesión y adoptan formas bien definidas. Existen varias disciplinas que estudian los sólidos:


-La física del estado sólido estudia de manera experimental y teórica la materia condensada, es decir, de líquidos y sólidos que contengan más de 1019 átomos en contacto entre sí

-La mecánica de sólidos deformables estudia propiedades microscópicas desde la perspectiva de la mecánica de medios continuos (tensión,deformación, magnitudes termodinámicas, &c.) e ignora la estructura atómica interna porque para cierto tipo de problemas esta no es relevante.

-La ciencia de los materiales se ocupa principalmente de propiedades de los sólidos como estructura y transformaciones de fase.

-La química del estado sólido se especializa en la síntesis de nuevos materiales.

Propiedades intensivas de los sólidos:


Elasticidad: Un sólido no recupera su forma original cuando es deformado. Un resorte es un objeto en que podemos observar esta propiedad ya que vuelve a su forma original.
Fragilidad: Un sólido puede romperse en muchos fragmentos (quebradizo).
Dureza: hay sólidos que no pueden ser rayados por otros más blandos. El diamante es un sólido con dureza elevada.
Forma definida: Tienen forma definida, son relativamente rígidos y no fluyen como lo hacen los gases y los líquidos, excepto bajo presiones extremas del medio.
Volumen definido: Debido a que tienen una forma definida, su volumen también es constante.
Alta densidad: Los sólidos tienen densidades relativamente altas debido a la cercanía de sus moléculas por eso se dice que son más “pesados”
Flotación: Algunos sólidos cumplen con esta propiedad, solo si su densidad es menor a la del líquido en el cual se coloca.
Inercia: es la dificultad o resistencia que opone un sistema físico o un sistema social a posibles cambios, en el caso de los sólidos pone resistencia a cambiar su estado de reposo.
Tenacidad: En ciencia de los Materiales la tenacidad es la resistencia que opone un material a que se propaguen fisuras o grietas.
Maleabilidad: Es la propiedad de la materia, que presentan los cuerpos a ser labrados por deformación. La maleabilidad permite la obtención de delgadas láminas de material sin que éste se rompa, teniendo en común que no existe ningún método para cuantificarlas.
Ductilidad: La ductilidad se refiere a la propiedad de los sólidos de poder obtener hilos de ellas.


lunes, 29 de abril de 2013

Potencia


Cantidad de trabajo efectuado por una unidad de tiempo.

Si W es la cantidad de trabajo realizado durante un intervalo de tiempo de duración Δt, la potencia media durante ese intervalo está dada por la relación:

La potencia instantánea es el valor límite de la potencia media cuando el intervalo de tiempo Δt se aproxima a cero:


Donde
P= es la potencia,
W=es el trabajo,
t= es el tiempo.
r= es el vector de posición.
F= es la fuerza.
v= es la velocidad.
Trabajo


En mecánica clásica, el trabajo que realiza una fuerza sobre un cuerpo equivale a la energía necesaria para desplazar este cuerpo.1 El trabajo es una magnitud física  escalar que se representa con la letra (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.

Ya que por definición el trabajo es un tránsito de energía,
2 nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.

Matemáticamente se expresa como:



Donde es el módulo de la fuerza, es el desplazamiento y es el ángulo que forman entre sí el 
vector fuerza y el vector desplazamiento (véase dibujo).

Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que se aplica, dicha fuerza no realiza trabajo alguno. Asimismo, si no hay desplazamiento, el trabajo también será nulo.
Fricción o Rozamiento
Se define como fuerza de rozamiento o fuerza de fricción, a la fuerza entre dos superficies en contacto, a aquella que se opone al movimiento entre ambas superficies (fuerza de fricción dinámica) o a la fuerza que se opone al inicio del movimiento (fuerza de fricción estática). Se genera debido a las imperfecciones, mayormente microscópicas, entre las superficies en contacto. Estas imperfecciones hacen que la fuerza perpendicular R entre ambas superficies no lo sea perfectamente, si no que forme un ángulo φ con la normal N (el ángulo de rozamiento). Por tanto, la fuerza resultante se compone de la fuerza normal N (perpendicular a las superficies en contacto) y de la fuerza de rozamiento F, paralela a las superficies en contacto.

Tipos de fricción
Fig. 2 - Diagrama de fuerzas para el esquema de la figura 1. Según sea la magnitud del empuje Thabrá fricción estática (equilibrio) o cinética (con movimiento).


Existen dos tipos de rozamiento o fricción, la fricción estática (FE) y la fricción dinámica (FD). El primero es la resistencia que se debe superar para poner en movimiento un cuerpo con respecto a otro que se encuentra en contacto. El segundo, es la resistencia, de magnitud considerada constante, que se opone al movimiento pero una vez que éste ya comenzó. En resumen, lo que diferencia a un roce con el otro, es que el estático actúa cuando los cuerpos están en reposo relativo en tanto que el dinámico lo hace cuando ya están en movimiento.

La fuerza de fricción estática, necesaria para vencer la fricción homóloga, es siempre menor o igual al coeficiente de rozamiento entre los dos objetos (número medido empíricamente y que se encuentra tabulado) multiplicado por la fuerza normal. La fuerza cinética, en cambio, es igual al coeficiente de rozamiento dinámico, denotado por la letra griega , por la normal en todo instante.

No se tiene una idea perfectamente clara de la diferencia entre el rozamiento dinámico y el estático, pero se tiende a pensar que el estático es algo mayor que el dinámico, porque al permanecer en reposo ambas superficies pueden aparecer enlaces iónicos, o incluso microsoldaduras entre las superficies, factores que desaparecen en estado de movimiento. Éste fenómeno es tanto mayor cuanto más perfectas son las superficies. Un caso más o menos común es el del gripaje de un motor por estar mucho tiempo parado (no sólo se arruina por una temperatura muy elevada), ya que al permanecer las superficies, del pistón y la camisa, durante largo tiempo en contacto y en reposo, pueden llegar a soldarse entre sí.

Fricción estática
Fricción 01.svg


Es la fuerza que se opone al inicio del movimiento. Sobre un cuerpo en reposo al que se aplica una fuerza horizontal F, intervienen cuatro fuerzas:
F: la fuerza aplicada.
Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al movimiento.
P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.
N: la fuerza normal, con la que la superficie reacciona sobre el cuerpo sosteniéndolo.

Rozamiento dinámico
Fricción 02.svg


Dado un cuerpo en movimiento sobre una superficie horizontal, deben considerarse las siguientes fuerzas:F: la fuerza aplicada.Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al movimiento.Fi: fuerza de inercia, que se opone a la aceleración de cuerpo, y que es igual a la masa del cuerpo m por la aceleración que sufre a.P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.N: la fuerza normal, que la superficie hace sobre el cuerpo sosteniéndolo
.
Equilibrio Rotacional
Ocurre cuando un cuerpo o sistema no gira con respecto a algún punto, aunque exista una tendencia.

Es decir cuando ocurre dos cosas:
1) La velocidad rotación angular es constante.

2) Cuando el eje de rotación no cambia de dirección en el tiempo.
Su formula es:

M = F*r

Donde:
M = Momento de fuerza
F = Fuerza que se aplica
r = Brazo de palanca
Equilibrio Traslacional


Un cuerpo se encuentra en equilibrio traslacional cuando la sumatoria de todas las componentes en X es igual a 0 y todas las componentes en Y es igual a 0.

Cuando un cuerpo esta en equilibrio traslacional no tiene fuerza resultante actuando sobre el.

Primera Ley de Equilibrio:
Un cuerpo se encuentra en equilibrio si y sólo si la suma vectorial de las fuerzas que actúna sobre el es igual a 0.

Fx=Ax+Bx+Cx+Dx.......=0
Fy=Ay+By+Cy+Dy.......=0
Tercera ley de Newton o Ley de acción y reacción

Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.

La tercera ley de Newton es completamente original (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo. Expone que por cada fuerza que actúa sobre un cuerpo (empuje), este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto.

Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".

Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento linealy del momento angular.
Segunda ley de Newton o Ley de fuerza


La segunda ley del movimiento de Newton dice que:


El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime

Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en el momento lineal de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.


La fuerza es el producto de la masa por la aceleración, que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre y . Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.

Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.

De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.

La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento:rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).

Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con una resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.
Primera ley de Newton o Ley de la inercia


La primera ley del movimiento rebate la idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:


Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.

Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él. Newton toma en cuenta, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como esta a la fricción.

En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma; un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se entiende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.

La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.

En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, por ejemplo, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial. Lo anterior porque a pesar que la Tierra cuenta con una aceleración traslacional y rotacional estas son del orden de 0.01 m/s^2 y en consecuencia podemos considerar que un sistema de referencia de un observador dentro de la superficie terrestre es un sistema de referencia inercial.

martes, 12 de marzo de 2013


Movimiento rectilíneo uniforme (MRU)





Un movimiento es rectilíneo cuando el cuerpo describe una trayectoria recta, y es uniforme cuando su velocidad es constante en eltiempo, dado que su aceleración es nula. Nos referimos a él mediante el acrónimo MRU.

El MRU (movimiento rectilíneo uniforme) se caracteriza por:
Movimiento que se realiza sobre una línea recta.
Velocidad constante; implica magnitud y dirección constantes.
La magnitud de la velocidad recibe el nombre de aceleracion o rapidez.
Aceleración nula.




La distancia recorrida se calcula multiplicando la magnitud de la velocidad media velocidad o rapidez por el tiempo transcurrido. Esta relación también es aplicable si la trayectoria no es rectilínea, con tal que la rapidez o módulo de la velocidad sea constante llamado movimiento de un cuerpo.

Al representar gráficamente la velocidad en función del tiempo se obtiene una recta paralela al eje de abscisas (tiempo). Además, el áreabajo la recta producida representa la distancia recorrida.

La representación gráfica de la distancia recorrida en función del tiempo da lugar a una recta cuya pendiente se corresponde con la velocidad.

Por lo tanto el movimiento puede considerarse en dos sentidos; una velocidad negativa representa un movimiento en dirección contraria al sentido que convencionalmente hayamos adoptado como positivo.

miércoles, 6 de marzo de 2013

Movimiento circular uniformemente acelerado


El movimiento circular uniformemente acelerado (MCUA), es un movimiento circular cuya aceleración α es constante. Es un caso particular de la velocidad y la aceleración angular.

Dada la aceleración angular α podemos obtener el incremento de la velocidad angular ω entre los instantes t0 y t1. La ecuación resultante de la velocidad es:
ω (t)=ω0+α0(t1-t0)

Movimiento circular uniforme


En física, el movimiento circular uniforme describe el movimiento de un cuerpo atravesando, con rapidez constante, una trayectoria circular.

Aunque la rapidez del objeto es constante, su velocidad no lo es: La velocidad, una magnitud vectorial, tangente a la trayectoria, en cada instante cambia de dirección. Esta circunstancia implica la existencia de una aceleración que, si bien en este caso no varía al módulo de la velocidad, sí varía su dirección.

martes, 5 de marzo de 2013

Tiro parabólico


Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Se corresponde con la trayectoria ideal de un proyectil que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme.

Puede ser analizado como la composición de dos movimientos rectilíneos: un movimiento rectilíneo uniforme horizontal y un movimiento rectilíneo uniformemente acelerado vertical.



El movimiento parabólico completo se puede considerar como la composición de un avance horizontal rectilíneo uniforme y un lanzamiento vertical hacia arriba, que es un movimiento rectilíneo uniformemente acelerado hacia abajo (MRUA) por la acción de la gravedad.

En condiciones ideales de resistencia al avance nulo y campo gravitatorio uniforme, lo anterior implica que:

*Un cuerpo que se deja caer libremente y otro que es lanzado horizontalmente desde la misma altura tardan lo mismo en llegar al suelo.

*La independencia de la masa en la caída libre y el lanzamiento vertical es igual de válida en los movimientos parabólicos.

*Un cuerpo lanzado verticalmente hacia arriba y otro parabólicamente completo que alcance la misma altura tarda lo mismo en caer.

*Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola.
Tiro horizontal



El tiro horizontal se caracteriza por la trayectoria o camino curvo que sigue un cuerpo al ser lanzado horizontalmente.

viernes, 1 de marzo de 2013

Tiro Vertical


Es un movimiento sujeto a la aceleración gravitacional, solo que ahora es la aceleración la que se opone al movimiento inicial del objeto. El tiro vertical comprende subida y bajada de los cuerpos u objetos.

CARACTERISTICAS:
Nunca la velocidad inicial es cero.
Cuando el objeto alcance su altura máxima su velocidad en este punto es cero, mientras el objeto está de subida el signo de la velocidad es positivo y la velocidad es cero en su altura máxima, cuando comienza el descenso el signo de la velocidad es negativo.
La velocidad de subida es igual a la de bajada pero el signo de la velocidad aldescender es negativo.
Caída libre


En física, se denomina caída libre al movimiento de un cuerpo bajo la acción exclusiva de un campo gravitatorio. Esta definición formal excluye a todas las caídasreales influenciadas en mayor o menor medida por la resistencia aerodinámica del aire, así como a cualquier otra que tenga lugar en el seno de un fluido; sin embargo es frecuente también referirse coloquialmente a éstas como caídas libres, aunque los efectos de la viscosidad del medio no sean por lo general despreciables.
El movimiento del cuerpo en caída libre es vertical con velocidad creciente (aproximadamente movimiento uniformemente acelerado con aceleración g) (aproximadamente porque la aceleración aumenta cuando el objeto disminuye en altura, en la mayoría de los casos la variación es despreciable).
Movimiento rectilíneo uniformemente acelerado
(MRUA)



El movimiento rectilíneo uniformemente acelerado (MRUA), también conocido como movimiento rectilíneo uniformemente variado (MRUV), es aquel en el que un móvil se desplaza sobre una trayectoria recta estando sometido a una aceleración constante.

Un ejemplo de este tipo de movimiento es el de caída libre vertical, en el cual la aceleración interviniente, y considerada constante, es la que corresponde a la gravedad.

También puede definirse el movimiento como el que realiza una partícula que partiendo del reposo es acelerada por una fuerza constante.

El movimiento rectilíneo uniformemente acelerado (MRUA) es un caso particular del movimiento uniformemente acelerado (MUA).